España: UGR participa en el desarrollo de un nuevo método de bioimpresión 3D de tejidos

Un grupo de investigadores liderado por la Universidad de Granada (UGR) junto a la empresa granadina REGEMAT 3D, ha publicado un novedoso proceso de impresión llamado ‘VbV’ (del inglés Volume-by-Volumebiofabrication) o biofabricación volumen a volumen, que ayuda a superar los problemas que surgen cuando se trabaja en bioimpresión 3D con termoplásticos a altas temperaturas.

La bioimpresión 3D simultánea de materiales y células ha surgido durante los últimos años como una nueva tecnología para crear tejidos vivos que regeneren lesiones y órganos o que simulen entornos tumorales. Los materiales biocompatibles que existen actualmente para bioimpresión 3D poseen un amplio rango de temperatura de fundición para la impresión, cada uno con sus ventajas e inconvenientes. Los biomateriales que funden a baja temperatura permiten imprimir células que mantienen una mayor viabilidad, pero suelen presentar un comportamiento mecánico y de biodegradabilidad bajo. Sin embargo, la gran mayoría de polímeros termoplásticos con propiedades mecánicas óptimas para aplicaciones en regeneración de cartílago aprobados para uso clínico funde a altas temperaturas, por lo que la viabilidad celular disminuye en un proceso normal de bioimpresión denominado FDM (deposición de material fundido).

En este estudio, que publica la revista Experimental Biology and Medicine, mediante el proceso de configuración de bioimpresión ‘VbV’se genera el andamio con la geometría y características deseadas y a continuación se introducen las células en las zonas requeridas, permitiendo una total flexibilidad en la elección del polímero utilizado, la geometría del andamio y la distribución celular. La bioimpresión conjunta de un andamio de ácido poliláctico (PLA) y condrocitos ha demostrado que este procedimiento evita el daño celular, aboliendo la inducción demuerte (apoptosis) en las células sometidas al proceso de bioimpresión. Además, se obtiene un constructo biológico final sin las restricciones geométricas que pueden comprometer el rendimiento del tejido, lo cual aporta grandes ventajas cuando se trabaja en la regeneración de tejidos que soportan grandes cargas como es el caso del cartílago articular.

Mediante este método se han conseguido resolver las complicaciones principales de las técnicas comunes de bioimpresión 3D: i) se puede utilizar con biomateriales ya aprobados clínicamente que funden a altas temperaturas, como el ácido poliláctico (PLA) y la policaprolactona (PCL), ii) no tiene restricciones en geometrías que podrían limitar la aplicación clínica de labioimpresión 3D en cartílago, iii) se pueden bioimprimir células de forma conjunta sin que se vea afectada la viabilidad de las mismas. El método ha sido validado para la aplicación de lesiones de cartílago, pero es fácilmente trasladable a otro tipo de tejidos o incluso en la bioimpresión 3D de modelos tumorales. Por tanto, el uso de este proceso de biofabricación‘VbV’ 3D podría acelerar la aplicación clínica de la tecnología de bioimpresión.

Fuente: UGR